
CS Kickstart – Day 4
Additional Collage Techniques and Side Projects

New Picture Effects

 Blurring

 Sketch effect

 Blending pictures

 Adding shapes and text

 Can be used to reduce pixelization in scaled up
images or for artistic effect

 Blur an image by averaging nearby pixels

 Blurring is close to the opposite of sketch effect

Blurring

Simple Blurring Algorithm

For each pixel in the area you want to blur

 set the pixel equal to the average of the surrounding
pixels

Average red,
blue and green

def blur(pic):

 set newPic to an empty picture

 for x in range(1, getWidth(source)-1):

 for y in range(1, getHeight(source)-1):

 1) get red for top, bottom, L, R, center pixels of pic

 2) set red of center pixel on newPic as the average

 of the pixels you found in step 1

 repeat 1, 2 for blue and green

Blurring Psuedocode

Sample Results

Edge Detection

 Blurring is averaging across pixels.

 Edge detection is looking for differences between
pixels.

 We define differences as changes in luminescence

 If the pixel changes left-to-right, up and down, then
we make our pixel black. Else white.

 Luminescence = average of red, blue and green values

Review: Luminescence

Color Luminescence

How to detect edges for sketch

Edge

Not an Edge

A pixel is considered to be
on an edge if the pixels
underneath it and to the
right have significantly
different luminance values

How to detect edges for sketch

Edge

Not an Edge

A pixel is considered to be
on an edge if the pixels
underneath it and to the
right have significantly
different luminance values

def sketch(origPic):
 set newPic to be an empty picture
 for x in range(1, getWidth(origPic)-1):
 for y in range(1, getHeight(origPic) – 1):
 set lumRight to the luminance of the pixel to the right of (x,y)
 set lumDown to the luminance of the pixel under (x,y)
 set lumThis to the luminance of pixel at (x,y)

Sketch Effect Psuedocode

def sketch(origPic):
 set newPic to be an empty picture
 for x in range(1, getWidth(origPic)-1):
 for y in range(1, getHeight(origPic) – 1):
 set lumRight to the luminance of the pixel to the right of (x,y)
 set lumDown to the luminance of the pixel under (x,y)
 set lumThis to the luminance of pixel at (x,y)

Sketch Effect Psuedocode

Luminance = (green + red + blue)/3

def sketch(origPic):
 set newPic to be an empty picture
 for x in range(1, getWidth(origPic)-1):
 for y in range(1, getHeight(origPic) – 1):
 set lumRight to the luminance of the pixel to the right of (x,y)
 set lumDown to the luminance of the pixel under (x,y)
 set lumThis to the luminance of pixel at (x,y)
 if lumThis is significantly different from lumDown & lumRight:
 pixel (x,y) in newPic is black
 else:
 pixel (x,y) in newPic is white

Sketch Effect Psuedocode

Sample Results

Blending pictures

 How do we make pictures blend together?

 Make pixels “transparent”

 Do this as a “weighted sum” of each color in each pixel

 If it’s 50-50, we take 50% of red of picture1’s pixels + 50%
of red of picture2’s pixels (etc)

 Can weight sums to make one picture seem more
transparent than the other with 80-20 weighting

Example blended picture

Blended here

Blending code (1 of 3)

def blendPictures():

 barb = makePicture(getMediaPath("barbara.jpg"))

 katie = makePicture(getMediaPath("Katie-smaller.jpg"))

 canvas = makePicture(getMediaPath("640x480.jpg"))

 #Copy first 150 columns of Barb

 sourceX=0

 for targetX in range(0,150):

 sourceY=0

 for targetY in range(0,getHeight(barb)):

 color = getColor(getPixel(barb,sourceX,sourceY))

 setColor(getPixel(canvas,targetX,targetY),color)

 sourceY = sourceY + 1

 sourceX = sourceX + 1

Straightforward copy of

150 column’s of Barb’s

picture

Blending code (2 of 3)
 #Now, grab the rest of Barb and part of Katie

 # at 50% Barb and 50% Katie

 overlap = getWidth(barb)-150

 sourceX=0

 for targetX in range(150,getWidth(barb)):

 sourceY=0

 for targetY in range(0,getHeight(katie)):

 bPixel = getPixel(barb,sourceX+150,sourceY)

 kPixel = getPixel(katie,sourceX,sourceY)

 newRed= 0.50*getRed(bPixel)+0.50*getRed(kPixel)

newGreen=0.50*getGreen(bPixel)+0.50*getGreen(kPixel
)

 newBlue = 0.50*getBlue(bPixel)+0.50*getBlue(kPixel)

 color = makeColor(newRed,newGreen,newBlue)

 setColor(getPixel(canvas,targetX,targetY),color)

 sourceY = sourceY + 1

 sourceX = sourceX + 1

Here’s the

trick. For

each pixel,

grab 50% of

each red,

green and

blue

Blending code (3 of 3)

 # Last columns of Katie
 sourceX=overlap
 for targetX in range(150+overlap,150+getWidth(katie)):
 sourceY=0
 for targetY in range(0,getHeight(katie)):
 color = getColor(getPixel(katie,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY),color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(canvas)
 return canvas

Drawing on images

 Sometimes you want to draw on pictures,
to add something to the pictures.

 Lines

 Text

 Circles and boxes.

 We can do that pixel by pixel, setting black and white
pixels

Drawing lines on
Carolina

def lineExample():

 img = makePicture(pickAFile())

 verticalLines(img)

 horizontalLines(img)

 show(img)

 return img

def horizontalLines(src):

 for x in range(0,getHeight(src),5):

 for y in range(0,getWidth(src)):

 setColor(getPixel(src,y,x),black)

def verticalLines(src):

 for x in range(0,getWidth(src),5):

 for y in range(0,getHeight(src)):

 setColor(getPixel(src,x,y),black)

We can use the color name “black”

– it’s pre-defined for us.

Yes, some colors are already defined

 Colors defined for you already: black, white, blue,
red, green, gray, lightGray, darkGray, yellow,
orange, pink, magenta, and cyan

That’s tedious

 That’s slow and tedious to set every pixel you want to
make lines and text, etc.

 What you really want to do is to think in terms of
your desired effect (think about “requirements” and
“design”)

New functions

 addText(pict,x,y,string) puts the string starting at
position (x,y) in the picture

 addLine(picture,x1,y1,x2,y2) draws a line from
position (x1,y1) to (x2,y2)

 addRect(pict,x1,y1,w,h) draws a black rectangle
(unfilled) with the upper left hand corner of (x1,y1)
and a width of w and height of h

 addRectFilled(pict,x1,y1,w,h,color) draws a
rectangle filled with the color of your choice with the
upper left hand corner of (x1,y1) and a width of w and
height of h

The mysterious red box on the beach

def addABox():

 beach = makePicture(getMediaPath("beach-smaller.jpg"))

 addRectFilled(beach,150,150,50,50,red)

 show(beach)

 return beach

Example picture

def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

A thought experiment

 Look at that previous page: Which has a fewer
number of bytes?

 The program that drew the picture

 The pixels in the picture itself.

 It’s a no-brainer

 The program is less than 100 characters (100 bytes)

 The picture is stored on disk at about 15,000 bytes

Vector-based vs.
Bitmap Graphical representations

 Vector-based graphical representations are basically
executable programs that generate the picture on
demand.
 Postscript, Flash, and AutoCAD use vector-based

representations

 Bitmap graphical representations (like JPEG, BMP,
GIF) store individual pixels or representations of
those pixels.
 JPEG and GIF are actually compressed representations

Vector-based representations can be
smaller

 Vector-based representations can be much smaller
than bit-mapped representations

 Smaller means faster transmission (Flash and
Postscript)

 If you want all the detail of a complex picture, no, it’s
not.

But vector-based has more value than that

 Imagine that you’re editing a picture with lines on it.
 If you edit a bitmap image and extend a line, it’s just more bits.

 There’s no way to really realize that you’ve extended or shrunk
the line.

 If you edit a vector-based image, it’s possible to just change the
specification

 Change the numbers saying where the line is

 Then it really is the same line

 That’s important when the picture drives the creation of
the product, like in automatic cutting machines

How are images compressed?

 Sometimes lossless using techniques like run length
encoding (RLE)

 Instead of this:
B B Y Y Y Y Y Y Y Y Y B B

 We could say “9 Y’s” like this:
B B 9 Y B B

 Lossy compression (like JPEG and GIF) loses detail, some
of which is invisible to the eye.

When changing the picture means changing a
program…

 In a vector-based drawing package, changing the
drawing is changing a program.

 How could we reach in and change the actual
program?

 We can using string manipulation

 The program is just a string of characters

 We want to manipulate those characters, in order to
manipulate the program

Example programmed graphic

 If I did this right, we
perceive the left half as
lighter than the right half

 In reality, the end quarters
are actually the same
colors.

Building a programmed graphic

def greyEffect():
 file = getMediaPath("640x480.jpg")
 pic = makePicture(file)
 # First, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(1,100):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 # Second, 100 columns of increasing greyness
 greyLevel = 100
 for x in range(100,200):
 grey = makeColor(greyLevel, greyLevel,
greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1

Third, 100 colums of increasing greyness,
from 0
 greyLevel = 0
 for x in range(200,300):
 grey = makeColor(greyLevel, greyLevel,
greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1
 # Finally, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(300,400):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 return pic

Another Programmed Graphic

def coolpic():

 canvas=makePicture(getMediaPath("640x480.jpg"))

 for index in range(25,1,-1):

 color = makeColor(index*10,index*5,index)

 addRectFilled(canvas,0,0,index*10,index*10,color)

 show(canvas)

 return canvas

And another

def coolpic2():

 canvas=makePicture(getMediaPath("640x480.jpg"))

 for index in range(25,1,-1):

 addRect(canvas,index,index,index*3,index*4)

 addRect(canvas,100+index*4,100+index*3,index*8,index*10)

 show(canvas)

 return canvas

