
Lab:

Day 3

Exercises:

Copying

Cropping

Scaling

Projects: A Collage

Exercise 1: Copying

 Make a lab3 folder in your jes-4-3-nojava folder

Exercise 1(a): Copy into corner

 Define a new function named copy(picture) that takes a
picture as input and copies that picture into the corner of a
canvas, shows that canvas and then returns it.
 Note: the canvas must be the same size or larger than the picture being

copied

 Reminder: a blank canvas is made by calling the function
makeEmptyPicture(width?, height?, white)

Exercise 1(b): Copy into middle

 Define a new function copyMidway(picture) that takes a
picture as input and copies that picture into the middle of a
canvas, shows that canvas and returns that canvas.
 Note: this time we need to start at a different (targetX, targetY) coordinate!

Exercise 1(c): Copy into a given location

 Define a new function named copyInto(picture, destX,
destY) that takes a picture as input and copies that picture
into the given location, shows that canvas and returns that
canvas.

After you’ve fully created your functions, make a picture and

call these functions at the bottom of your programming area to

see your results.

Load your program. You should now see your picture!
(there are hints on the next page)

STOP
(if you find yourself finishing the labs quickly, you should not be reading this page)

Recall the structure of a double for loop…

 for y in range(num1, num2): #traverse rows

 for x in range(num1, num2): #traverse columns

 probably getPixel(picture, x, y)

 do something with that pixel

Here’s the example of copy in pseudocode:
(this can also be used for copyMidway and copyInto -- the targetX and targetY will be different)

def copy(picture):

 initialize targetY

 for each sourceY in picture

 initialize targetX

 for each sourceX in picture

 find the picture’s pixel

 find the color of that pixel & assign it to a variable

 find the target’s pixel

 set the color of the target pixel to the color

 increment targetX

 increment targetY

 show the final result which should be on your canvas

 return the canvas

Exercise 2: Cropping

The Big Picture: Copy less of the picture into the canvas.

Write the function crop that takes in a picture, the starting
coordinates (startX, startY) and a newWidth and
newHeight that represents the dimensions of the picture we are
copying over (or cropping) and copies part of the picture over onto
a canvas, shows that canvas, and returns that canvas.

Note: we need to make sure the canvas is still as large as what we are copying into it.

def crop(picture, startX, startY, newWidth, newHeight):

After you’ve fully created your function, make a picture and call
this function at the bottom of your programming area. If you
wanted to start at (10,20) and end up with a picture that is
50x100 (WxH) you make a call similar to the following:

crop(picture, 10, 20, 50, 100)

Load your program. You should now see your picture!

(there are hints on the next page)

 Two differences from copying:

 The starting location for the original picture

 And the range that we are copying!

STOP
(if you find yourself finishing the labs quickly, you should not be reading this page)

Here’s an example in pseudocode:
def crop(picture, startX, startY, newWidth, newHeight):

 initialize targetY #start at 0

 for each sourceY in new Y range

 initialize targetX #start at 0

 for each sourceX in new X range
 find the picture’s pixel

 find the color of that pixel & assign it to a variable

 find the target’s pixel

 set the color of the target pixel to the color

 increment targetX

 incremenet targetY

 show the final result which should be on your canvas

 return the canvas

for the new x range:

Exercise 3: Scaling

Big Picture: Changing the size of an image by choosing a limited set of the pixels in
the given picture to copy over!

The Strategy:

 If we want a smaller copy, we skip some pixels
 We sample fewer pixels
 Increment by 2!

 If we want a larger copy, we duplicate some pixels
• We over-sample some pixels
• Increment by 0.5!

a) Write the function scaleLarger(picture) that takes in a picture and

scales the picture with the strategy given onto a canvas, shows that canvas
and returns that canvas. The new height and width will be doubled; meaning
a quadrupled area!

b) Write a function scaleSmaller(picture) that takes in a picture and scales

the picture with the strategy given onto a canvas, shows that canvas, and
returns that canvas. The new height and width will be halfed; meaning it will
be ¼ the original area.

After you’ve fully created your function, make a picture and call this
function at the bottom of your programming area by typing
scaleLarger(picture) or scaleSmaller(picture).

Load your program. You should now see your picture!

(there are hints on the next page)

STOP
(if you find yourself finishing the labs quickly, you should not be reading this page)

Here’s some pseudo-code for scaleLarger to get you started…

def scaleLarger(picture):

 make a canvas that is twice the size of the original picture

 initialize sourceX = 0

 for targetX in a new range that is twice as large:

 initialize sourceY = 0

 for targetY in new range that is twice as large:

 get the color of the source picture’s pixel

 set the color of the canvas’s pixel to be that color

 increment sourceY by 0.5

 increment sourceX by 0.5

 show the final result which should be on your canvas

 return that canvas

Exercise 4: Collage: Copying and Cropping and Scaling, Oh My!

The Big Picture:

Could we do something to the pictures we copy in or crop or scale?
Of course! We can call any of the function we have already made on
the picture before we do the copying, cropping or scaling!

Note: these are going public! Spend some time on them!

• Create a collage
– by coping your pictures into a canvas!

– Be creative:

• Scale, crop, change colors, grayscale, posterize,
negative, etc.

• Unity amidst variety

• Use the same picture more than once

– Save pictures with writePictureTo(picture,filename)

Note: you will have to keep track of the edge where you left off!

STOP
(if you find yourself finishing the labs quickly, you should not be reading this

part)

Here’s an example in pseudocode:

How to we check for green?

if(getRed(p)+getBlue(p)< factor*getGreen(p) and

getGreen(p) >num):

Mess around with num and factor to get

best possible result!

def chromakey(source, background):

 for each y #do the rows

 for each x #do the columns

 get source pixel sourcePX

 if color of the sourcePX IS green #???

 get background pixel’s color

 set color of sourcePX to be the background color

Bonus Exercises
 Write a function notAllowed(picture) that takes in a picture

and creates a red circle with a cross through it. It should be around
some action or object that is not allowed. Like so:

 You might need to take in additional arguments,

 such as a radius and a center of the picture.

 Write a function halfTint(picture) that

 takes in a picture and makes half of the picture

 more red, and half of the picture more blue

 Write a function tripleTint(picture) that takes in a picture

and makes 1/3 of the picture more red, and 1/3 of the picture more
blue and the last 1/3 of the picture more green.

