
Lab: Day 2

What you’ll do:

Replacing colors

Posterizing

Sepia-Tints

Mirrors

What you’ll learn:

Conditionals

More for-loops

Using ranges

Implementing algorithms

Exercise 1:

Replace brown spots in a picture with red!

 Make a lab2 folder in your jes-4-3-nojava folder

 Find a picture online (smaller than 800x800 pixels) with some brown tints
that you’d like to turn red. Save the photo into your lab2 folder as
“filename.jpg”.

 Open JES and save this JES document as “Lab 2” in your lab2 folder.

 Define a new function named turnRed() that takes no inputs. Now we’ll
write the turnRed() function.

The Big Picture: You’ll turn your file into a picture and then use the MediaTools
(drop-down menu) to find the RGB values for the brown in your picture. Then,
for each pixel in your picture, if the pixel’s color is close to brown, you’ll set the
redness of that pixel to be 1.5 times greater.

 First, within your turnRed function, turn your file into a picture.
def turnRed():

 #turn your filename into a file using “lab2/filename.jpg”

 #make a picture out of the file using the makePicture(file) function

 Then, load your program so that JES knows your picture exists now. Click on
the MediaTools dropdown menu and select “picture tools.” Select the
picture variable you just made, and your picture should now pop up. Click on
a brown spot and record its RGB values (see image example below). We’re
going to use these values later in our function.

1) Click a brown spot on picture

3) Notice x & y coordinates

2) Record RGB values

 Using these RGB values, make the color brown using
MakeColor(redValue, greenValue, blueValue) and assign it to a
variable. Now you’re all set to write the rest of the function!

 Here’s an example in pseudocode:
def turnRed():

 make a file using your filepath

 make a picture out of the file

 make a brown color and assign it to a variable

 for every pixel in the picture

 find the color of the pixel & assign that value to a
variable

 if the color’s distance to brown is less than 50:

 get current redness of pixel and increase by 1.5 (and
 assign this value to a variable)

 set the redness to be the new color you’ve just found

 show the final result

 Recall the structure of a for loop…

 for item in items:

 do something with item

 Handy built-in functions that you’ll find helpful:
makeColor(redValue, greenValue, blueValue)

makePicture(file)

getPixels(picture)

getColor(pixel)

distance(color, anotherColor)

getRed(pixel)

setRed(pixel, redness)

show(picture)

• After you’ve fully created your function, call this function at the
bottom of your lab2 document by typing turnRed().

• Load your program. You should now see your picture with
browns replaced by redder tints!

Exercise 2: Posterizing!
Aka, reducing the range of colors in a picture.

The Big Picture: Look for a range of colors and map them onto a
single color!

Here’s an idea of how to posterize red colors:
def posterize(picture):

 for each pixel in the picture:

 get the red value of the pixel and call it “red”

 if red is less than 64

 set red to be 31 (or some other intermediate value)

 if red is between 64 and 128

 set red to be 95 (or some other intermediate value)

 (etc.)

Recall the structure of an “if” statement…
if condition:

 body

if another-condition:

 another-body

if another-condition:

or alternatively, use “else: ” to catch all other conditions

 another-body

64 128 191 255

Set anything in this range
to be 31

Set this range
to be 95

Set this range
to be 159

Set this range
to be 223

0

Useful built-in functions for this exercise:
getPixels(picture)

getRed(pixel)

getGreen(pixel)

getBlue(pixel)

setRed(pixel, newValue)

setGreen(pixel, newValue)

setBlue(pixel, newValue)

Below this function:

 Add code to make a picture using the makePicture(file) function,
call the posterize(picture) function on this picture, and use the
function show(picture) to show the picture. If you’d like, save your
new picture into your lab2 folder using: writePictureTo(picture,
“lab2/filename.jpg”)

• After loading the program, you should see your posterized
picture! Try changing the intermediate values you had set your
ranges to be, and see how this changes the outcome of your
picture.

Bonus exercise:

Add to your for loop so that the same posterizing modifications will
be done for green and blue.

Exercise 3: Sepia-toned prints

Big Picture: we can’t just increase the amount of yellow because it’s
not a one-to-one correspondence. Instead, colors in different ranges
get converted to different colors!

The Strategy:

 First, convert the picture to greyscale.

 Then, for tint shadows (pixels where the red value is < 65 or so),
set the red to be slightly greater and blue to be slightly less than
the current amount. For example, you could try a factor of 1.1
red and 0.9 blue.

 For tint midtones (pixels where the red value is between 65 and
190 or so), increase red slightly more than we did for tint
shadows, and decrease blue slightly more than we did for tint
shadows.

 For tint highlights (pixels where the red value is greater than 190
or so), increase red slightly less than we did for tint shadows,
and decrease blue slightly less than we did for tint shadows.

Here’s some structure to get you started…

def sepiaTint(picture):
 convert picture to greyscale – see below for the function from lab1
 loop through picture to tint the pixels
 if pixel is a tint shadow (value is below 65)
 change red and blue by certain amounts
 if pixel is a tint midtone (value is between 65 and 190)
 change red and blue by certain amounts
 if pixel is a tint highlight (value is greater than 190)
 change red and blue by certain amounts

Handy built-in functions that you’ll find helpful:

def grayscale(picture):
 for p in getPixels(picture):
 sum = getRed(p) + getGreen(p) + getBlue(p)
 intensity = sum / 3
 setColor(p, makeColor(intensity, intensity, intensity))

getPixels(picture)
getRed(pixel)
getBlue(pixel)
setRed(pixel, newRedValue)
setBlue(pixel, newBlueValue)

Finally, add code to make a picture using the makePicture(file) function,
call the sepiaTint(picture) function on this picture, and show the picture
using the function show(picture). If you’d like, save your new picture
into your lab2 folder using: writePictureTo(picture,
“lab2/filename.jpg”)

After loading the program, you should see your sepia tinted picture!

Just for kicks:

* Try changing the ranges of your tones in the conditions of your “if”
statements to see how this affects your picture.
* Try setting your reds and blues by greater or smaller factors to see
what this does to your picture.

Exercise 4: Mirroring!

The Big Picture:

To mirror a picture, imagine slicing the picture down the middle and
sticking a mirror on that dividing line. For each pixel on one side of
the mirror, find its distance from the center (the mirrorpoint) and
copy its color over to the point directly on the opposite side of the
mirror, the same distance away. In the example below, pixel b
would be copied to location d.

Find a small (under 800 x 800 pixels) picture you’d like to mirror-ify,
save it to your lab2 folder and convert it to a picture using
makePicture(file).

Recall how to use ranges and 2 nested for-loops to loop over an entire picture:

y loops from 0 (inclusive) to the picture height (exclusive)
for y in range(0, picture height):
 # x loops from 0 (inclusive) to picture width (exclusive)
 for x in range(0, picture width):
 get the pixel at this x and y coordinate
 do something with the pixel

Exercise 4a
Use 2 nested for-loops to increase the
red in every pixel of your picture. Show
your picture at the end to test it!

Recall these useful functions:
getRed(pixel)
setRed(pixel, value)

What if we only want to loop over the left half of the picture? For the x
direction, we could start from 0 and loop up to the middle of the picture. The
inner for loop (in blue) would change to look something like this:

for y in range(0, getHeight(picture)):
 for x in range(0, int(half of width)):
 # Note: max distance from middle must be an integer, hint: use
int(number)
 # xOffset represents distance from middle
 get the pixel at this x and y coordinate
 do something with the pixel

Exercise 4b

Try using this framework to increase the
red component of only the pixels on the left
half of your picture! Show your picture at
The end to test it!
(see next page for useful functions)

x loops up to width

Y
lo

o
p

s
u

p
 t

o
 h

e
ig

h
t Pt (0, 0)

x loops up
to half of width

Y
lo

o
p

s
u

p
 t

o
 h

ei
gh

t Pt (0, 0)

M
ir

ro
r

Handy built-in functions that you’ll find helpful:
int(number) # rounds a number down to the nearest integer

getWidth(picture)

getHeight(picture)

getPixel(picture, x, y)

getColor(pixel)

setColor(pixel, newColor)

show(picture)

Exercise 4c
Modify the double-for loop you have written to copy all the pixels on the left
side of the mirror to their corresponding position on the right side of the mirror.

STOP: See below only if you get stuck!

Here’s some basic structure to help you.

def mirrorVertical(picture):

 width = getWidth(picture) – 1

 find half-width of picture, convert to integer, and assign to a variable

 for y in range(0, picture height):

 for x in range(0, half width):

 get pixel at the location (x, y) & assign to variable “leftpix”

 get pixel at the spot opposite of this one & assign to var.
“rightpix”

 set the color of rightpix to be the color of leftpix

x loops up
to half of width

Y
lo

o
p

s
u

p
 t

o
 h

ei
gh

t Pt (0, 0)

M
ir

ro
r

leftpix
(source)

rightpix
(destination)

Finally, add code to call the mirrorVertical(picture) function on your
picture and remember to show the picture. If you’d like, save your new
picture into your lab2 folder using: writePictureTo(picture,
“lab2/filename.jpg”). After loading the program, you should see your
mirrored picture!

Exercise 4d
Write a function mirrorHorizontal(picture) that mirrors your picture
horizontally instead of vertically.

Bonus Exercises
 Write a function rotate90cc(picture) that rotates the picture 90

degrees counterclockwise.

 Write a function rotate90c(picture) that rotates the picture 90
degrees clockwise.

 Write a function rotate180(picture) that rotates the picture 180
degrees.
 Now do it without using the function rotate90(picture)

 Write a function removeRedEye(picture) that takes in a picture of a
person with red-eye and fixes it so that their eyes are black, brown,
or blue.

 Write a function jail(picture) that takes in a picture of a person
and puts that person behind vertical black bars. The bars should be
evenly spaced.

 Write a function window(picture) that takes in a picture and adds a
“window” in front of it so that vertical and horizontal black bars are
added to the picture.

 Write a function crop(picture, newPicture, x1, y1, x2, y2) that
takes in a picture, the upper left corner and lower right corner
coordinates of the area you want to crop, and puts it into a new
picture.

