
CS Kickstart – Day 2

Defining Functions

Conditionals (If Statements)

Double For Loops

 Function Name

 Input Values (optional)

 Zero, one, or many

 Sometimes called “parameters”

 Function Body

 Indented

Review: Parts of a Function

Review: Parts of a Function

def decreaseRed(picture):

 for p in getPixels(picture):

 value = getRed(p)

 setRed(p,value* 0.5)

Function Name Input Value

Body

What do functions do?

Input Output Function

What do functions do?

x x2 square(x)

Input

Function

Output

y = square(4)

print y

What would print?

Calling a Function

Input

Output

def square(x):

 return x*x
def square(x):

 return x*x

y = square(4)

y = output of function “square”

 called with input value 4

y = 16

Calling a Function

4

16

def square(x):

 return x*x
def square(x):

 return x*x

Parts of a Function

def decreaseRed(picture):

 for p in getPixels(picture):

 value = getRed(p)

 setRed(p,value* 0.5)

 return picture

Function Name Input Value

Body

Return Statement

def decreaseRed(picture):

 for p in getPixels(picture):

 value = getRed(p)

 setRed(p,value* 0.5)

 return picture

>>> result = decreaseRed(myPicture)

>>> show(result)

result = output

return means output

If condition:

 BODY #1

How ‘if’ Statements Work

Only IF the condition is true

THEN BODY #1 is executed

x = 2

If x < 2 :

 print “Body 1”

  Is something

printed?

If condition:

 BODY #1

else:

 BODY #2

How ‘if’ Statements Work

Only IF the condition is true

THEN BODY #1 is executed

Otherwise (the condition

is false) BODY #2 is executed

x = 2

If x < 2 :

 print “Body 1”

else:

 print “Body 2”

  What is printed?

Conditions need to evaluate to true or false.

Here are other conditions you can use:

 Test equality with ‘==‘

 Ex: 4 == 5

 Text not equal with ‘!=‘

 Ex: 4 != 5

 Test comparisons > , >= , < , <=

 and , or

Conditionals

‘if’ in action

if x < 10:

 print “small”

if x >= 10 and x < 20:

 print “medium”

if x >= 20 and x < 30:

 print “large”

Why can’t we use our increaseRed function?

Let’s Make Barbara a Redhead

Psuedocode for Red Hair

def turnRed():

 make a picture using a file

 for each pixel in the picture:

 figure out the color of the pixel

 if the color is close to the brown color in her hair:

 increase the redness of this pixel

 show the picture

 return the picture

Implementation

def turnRed():

 make a picture using a file

 for each pixel in the picture:

 figure out the color of the pixel

 if the color is close to the brown color in her hair:

 increase the redness of this pixel

 show the picture

 return the picture

Let’s do exercise #1 !
If you finish exercise #1, feel free to move on to exercise

#2. In a minute, we will go over hints for how to complete
exercise #2.

Posterizing:

Reducing the range of colors

Posterizing: How we do it

 Range of colors maps to a single color

 If statements to find which range

 End result: many colors  few colors

64 128 191 255

Set anything in this range

to be 31
Set this range

to be 95
Set this range

to be 159

Set this range

to be 223

0

Posterizing Psuedocode

def posterize(picture):
 for each pixel in the picture:
 get the red value of the pixel and call it redValue
 if redValue is less than 64:
 set red of pixel to be 31
 if redValue is between 64 and 128:
 set red of pixel to be 95

 if (redValue > 63 and redValue < 128)

Exercise #2
If you finish exercise #2, you may move on to #3. We will

break in a minute to talk about hints for exercise #3.

Exercise #3: Sepia-toned prints

Generating sepia-toned prints

 Yellowish tint that we associate with older
photographs.

 Can’t just increase the amount of yellow

 Range of colors converted to other colors

 We can create such conversions using if

def sepiaTint(picture):

 Convert image to greyscale

 Loop through pixels to tint each pixel

 find red and blue values of pixel

 tint shadows

 tint midtones

 tint highlights

 set new pixel color values for red and blue

Here’s how we do it

Double For loops and Ranges
This will help you complete exercise #4

Accessing Each Pixel

How do we access pixels?

for pixel in getPixels(picture):  seems like magic

 do something to pixel

Is there another way?

A Picture is a matrix of pixels

 A continuous line is an array

 1 dimension

 Pictures have 2 dimensions

 Height

 Width

 Our array needs 2 dimensions

 a matrix

Referencing a matrix

 We talk about positions in a
matrix as (x,y), or
(horizontal, vertical)

 Element (1,0) in the matrix
at left is the value 12

 What is the value of
element (0,2) ?

How to access each pixel

x loops up to width

Y
 l
o
o
p
s
 u

p
 t
o
 h

e
ig

h
t

Pt (0, 0)

x loops up to width

Y
 l
o
o
p

s
 u

p
 t
o
 h

e
ig

h
t

We’ll have to use nested loops:

 One to walk the width, the other to walk the height.

for each y position:  “for each row”

 for each x position:  “for each spot in the row”

 do something to the pixel at (x, y)

How to access each pixel

x loops up to width

Y
 l
o

o
p

s
 u

p
 t
o
 h

e
ig

h
t

for each y position:  “for each row”

 for each x position:  “for each space in row”

 mark pixel (x,y)

Example on White Board

x loops up to width

Y
 l
o
o
p

s
 u

p
 t
o
 h

e
ig

h
t

Using ranges

for i in range(0, 10):

 print i

Start

(inclusive)

End

(exclusive)

Breaking it down:

1. i is set to 0
2. print i
3. i is then set to 1
4. print I
5. etc…
6. When i is 10, stop

Introducing the function range

 Range returns a sequence between its first two inputs

>>> print range(0,4)
[0, 1, 2, 3]
>>> print range(-1,3)
[-1, 0, 1, 2]
>>> print range(3)
[0, 1, 2]

for each y position:  “for each row”

 for each x position:  “for each spot in the row”

 do something to the pixel at (x, y)

for y in range(0, height):

 for x in range(0, width):

 do something to the pixel at (x, y)

x loops up to width

Y
 l
o
o
p
s
 u

p
 t
o
 h

e
ig

h
t

Using ranges

Using Ranges

for y in range(0, getHeight(picture)):

 for x in range(0, getWidth(picture)):

 pixel = getPixel(picture, x, y)

 setRed(pixel, 5)

for pixel in getPixels(picture):
 pixel = getPixel(picture, x, y)
 setRed(pixel, 5)

Double for loop + Ranges

x loops up to width

Y
 l
o
o
p

s
 u

p
 t
o
 h

e
ig

h
t

for y in range(1, 3):

 for x in range(1, 4):

 pixel = getPixel(picture, x, y)

 setRed(pixel, 5)

Posterizing with Ranges

def posterize(picture):
 for y in range(70,168):
 for x in range(56,190):
 get the red value of the pixel and call it redValue
 if redValue is less than 64:
 set red of pixel to be 31
 if redValue is between 64 and 128:
 set red of pixel to be 95

What will the Posterizing function do now?

 For each pixel in the range covering the left half

 Get distance from the center line

 currentColor = Get color of the pixel

 Set pixel of same distance from center on right side to
the currentColor

Mirroring Overview

 For each pixel in the range covering the left half

 Get distance from the center line

 currentColor = Get color of the pixel

 Set pixel of same distance from center on right side to
the currentColor

Mirroring Overview: Example on board

Complete the rest of the lab!
If you have extra time, move on to the extra exercises or
experiment further with results from exercises #1 to #4.

WE WILL STOP 10 MINUTES EARLY TO SUBMIT YOUR WORK

