What you’ll do: What you’ll learn:

Changing colors Jython Basics
Negatives Calling Functions
Grayscale Assigning Variables

Making sunsets For loops

Exercise 0: Getting Started

Instructions:

* Go to Places — the drop-down menu in the upper left corner

* Goto Home Folder

* Goto JES-4-3-nojava #this is the folder you will be working in
* Create a “labl1” folder.

Big Picture:

We want you to feel comfortable with the interpreter.

Interpreter:
faNO JES - Jython Environment for Students - Untitled
! 1!
|
| Load Program UNLOADED Watcher

»> # THIS IS THE COMMAND LUINE

h Command Line

JFor help on a particular JES function, move tf Explain <click> Line Number:2 Position: 3

Activity:
- Discuss the difference between the editor and the command line with
your partner.
- Try to think of some benefits of each.
- Ask a lab assistant or teacher for verification of your ideas.

Exercise 1: Jython Basics

“To succeed, you will soon learn, as | did, the importance of a solid foundation in the basics” -Alan Greenspan

Command-line

Type each of the following expressions into the Jython prompt >>>, in the command-line,
ending the line with the Enter key. Predict the results before you type them!!! Some of

these expressions might cause Jython to error.

Jython Expressions:

#this is a comment

3

2 + 3

5+ 6 + 7

-16 - -16

3 4 + 1

3% (4 + 1)

from operator import add, mul
3 % 4

mul (3, 4)

mul (3, add(4, 1))

2 ** 3

pow (2, 3)

pow (pow (2, 3), abs(-2))

Assigning Variables
= 3

XK X X X X X X

Using the editor is next!

#do this column second
from math import sqgrt, exp
exp (1)

sgrt (144)

pi

from math import pi

pi

pi * 3
print (pi)

print (4)

print (add(9,1))
print (print (2))
False or True

True and False

Exercise 1: (cont)

Command-line

Type each of the following expressions into the Jython prompt >>>,in
the command-line, ending the line with the Enter key. Predict the
results before you type them!!! Some of these expressions might cause
Jython to error.

Strings

“kit-kat bar”

“I am” + “adding strings”
var = "I am a saved string”
var[0]

var[10]

var[100]

Lists

(1, 2, 3, 4]

[(“I”, “can”, Y“contain”, %“anything”]
[“"different”, 1, 2, “data”, 8]

(1, 2] + [3, 4]

var = [1, 2, 3, 4]

Exercise 2: Defining your own functions

Recall the structure of defining a function:
def <name>(<arguments names>):

return <expression>

Exercise 2(a): At the python prompt >>>, type the following:
>>> def square (n) :

return n*n

>>>

Be sure to indent the return statement correctly. Then, call the function cube
with some numerical argument.

Exercise 2(b): Now we will use the code editor to write a function. Rewrite the

following into the editor.

def doStuff(x, y):

return y + x * x

Now load the program into the Jython interpreter and test your function, by calling
doStuff with two numerical arguments at the prompt.

Exercise 2(c): So you decide that you want doStuf £ to actually square y and add x
(the opposite of what it is doing now). Edit the function in the editor, and test your
function again to make sure it’s doing the right thing.

Exercise 3: PICTURES!

Exercise 3(a): Collect the photos
Instructions:

Download pictures you want to work with and save them to your “lab1” folder.
* Make sure all of your pictures are of medium size or smaller! < 800x800 pixels
¢ Make sure all of your pictures are .jpg
* When you Google images, you can filter by size on the left column

Exercise 3(b): Manipulating Pictures

Experiment:

Try to remember what we went over in lecture in the first demo!

Make a photo appear by typing into the editor and loading your program

* You can look at what built-in functions we have by going to the “JES functions” drop-down menu

In the editor:

- make a file using your filepath* and assign that to a variable called myFile
- make a picture out of the file and assign that to a variable called myPic
- show that picture

Load your program so that JES shows your picture!
* Your filepath should be equivalent to “lab1/filename.jpg”

Exercise 3(c): pickAndShow

Define a function, pickAndShow—that does all of the above in one swoop—in
your editor. It should take no arguments.

Here’s an example in pseudocode:
def pickAndShow()

- Has the user pick a file and assigns that to a variable
- Turns that file into a picture and assigns that to variable
- Shows that picture
Once you have defined the function, call it inside of your editor

Now save and load the program # you should be able to choose a picture for it to show

Handy built-in functions that you might find helpful in 1(b) and 1(c):
e pickAFile() — when called, allows the user to choose a file
e makePicture(someFile) — when called with some file, returns the picture form of the file
e show(somePicture) — displays the picture it is called with

Exercise 3(d): decreaseRed

Big Picture:

We want you to call the function decreaseRed, provided below, on
a picture and display the result.

Note: We aren’t having you write the function for yourself yet! We are just trying to get you
comfortable with calling such functions!

Here is the code, type it into your editor:

def decreaseRed(picture):
for p 1in getPixels (picture) :
value=getRed (p)
setRed (p,value*0.5)

Call this function on a picture with red in it, and show the result!

Things to keep in mind:
1. We need a picture to call this function on, so be sure to make one.
2. You want to write this all out inside of your editor.

Experiment:

What if you decrease red again and again and again...? Try it!

Exercise 3.5: Extras

Only do these if you have extra time. Or you can help other people. Or both!
Recall the structure of defining a function:
def <name>(<arguments names>):

return <expression>

Attempt to write any of the following functions in python for practice

1. distance: given two coordinates, which can be a list of two numbers (i.e. [1, 2]),
attempts to find the distance between these two points.

def distance (pointl, point2):
your code here

>>> distance ([1,0] , [1,31])
3

2. Leap year: given a year, determine if that year is a leap year.

Rules:
- If a year is divisible by 400 then it is a leap year.
- If a year is divisible by 100 and not by 400, then it is not a leap year.

- If a year is divisible by 4 then it is a leap year

- Otherwise, it is not a leap year.

def leapyear? (year) :

your code here

>>> leapyear? (1987)
3

